

Code of Ethics Commitment

In this and all other ASHRAE meetings, we will act with honesty, fairness, courtesy, competence, inclusiveness and respect for others, which exemplify our core values of excellence, commitment, integrity, collaboration, volunteerism and diversity, and we shall avoid all real or perceived conflicts of interests.

Diversity Commitment

ASHRAE is committed to providing a welcoming environment. Our culture is one of inclusiveness, acknowledging the inherent value and dignity of each individual. We proactively pursue and celebrate diverse and inclusive communities understanding that doing so fuels better, more creative and more thoughtful ideas, solutions and strategies for the Society and for the communities our Society serves. We respect and welcome all people regardless of age, gender, ethnicity, physical appearance, thought styles, religion, nationality, socio-economic status, belief systems, sexual orientation or education.

ASHRAE Puget Sound Chapter does not endorse any of the products, services, or technologies demonstrated or presented in this meeting.

Building Codes

Thank You Sponsors!

PLATINUM TRANE® **25** INC **MacDonald-Miller FACILITY SOLUTIONS®**

Building Codes

Meet the New Board!

Siddharth Premkumar President

Ty Wasserman, **Past-President**

Krishnan Gowri **President-Elect**

Lynndy Hedgcoth Treasurer

Kartik Tiwari Secretary

Building Codes

Sierra Spitulski, Governor

Meet the New Committee Chairs!

STUDENT ACTIVITIES	Emily Osurman, Michelle Fouard
MEMBERSHIP PROMOTION	Miriam Miller, Stephen Fournier
YOUNG ENGINEERS IN ASHRAE (YEA)	Jack Roberts, Alex Amimoto
RESEARCH PROMOTION	Ty Wasserman
CHAPTER TECHNOLOGY TRANSFER	Krishnan Gowri, Ryan Mattis
GOVERNMENT AFFAIRS	Brad Lentz

Building Codes

Upcoming Events

Georgetown Steam Plant Science Fair

Event Details

- **Date:** September 22, 2024 12:00 pm – 6:00 pm PDT
- Venue: Georgetown Steam Plant
- Categories: Students

UW Dawg Daze Engineering Launch

October 2024 Chapter Meeting

Event Details

- Date: October 23, 2024 5:30 pm 7:30 pm PDT
- Venue: 515 MADISON STREET
- Categories: Chapter Meeting

Dr. David Chassin Senior staff scientist SLAC National Accelerator Laboratory Stanford University

Event Details

- Date: September 24, 2024 4:30 pm - 7:00 pm PDT
- Categories: Students

Grid Impacts of Building Electrification: Load Modeling and Forecast for the Next 10 Years

Building Codes

Building Decarbonization

Upcoming Changes in Codes and Standards

Charles Eley, FASHRAE, FAIA, PE

A Jumble of Units are Used (pick one from each side)

GHG Emissions

- Pounds (lb)
- Short ton (2,000 lb)
- Metric ton (1,000 kg or 2,204 lb)
- • Kilogram (2.2 lb or 1,000 grams)
- Gram
- More

Per Unit of Energy Use

- Btu or kBtu (1,000 Btu)
- Therm (100,000 Btu)
- Cubic foot (natural gas)
- Joule, Megajoule Gigajoule
- kWh
- MWh
 - More

I will use **kg/MWh** throughout this presentation for all emissions

Fossil Fuel Emissions = Combustion + Pre-Combustion

Combustion Emissions

Basic chemistry + 202 C02 2 H₂0 CH₄ Methane Oxygen **Carbon Dioxide** Water

Combustion Reaction

Mining/extraction

Refinement/processing

Transportation/delivery

ASHRAE Puget Sound, September 18, 2024

Example Operational Emissions from Gas Plant (US fleet average)

ASHRAE Puget Sound, September 18, 2024

ASHRAE Puget Sound, September 18, 2024

Transmission and Distribution Losses

Figure 3 – Transmission and Distribution Losses

Source: Energy Information Agency, Monthly Energy Review, Table 7-1

ASHRAE Puget Sound, September 18, 2024

GHG Emissions from Fossil Fuels

Table 1 – GHG Emissions in kg per MWh of Fuel Burned

Source: NREL LCI Database, except for pre-combustion CH₄ emissions which are based on methane leaks of 1.09%. When two values are provided, the first is for a 20-year GWP and the second is for a 100-year GWP.

Fuel	Stage	CO ₂ CH ₄		N ₂ O	Total				
Unweighted Mass of Emissions (kg/MWh)									
Coal	Pre-Combustion	7.39	0.5233	0.0001	225				
1 MWh = 354 lb	Combustion	326.90	0.0385	0.0056	555				
Petroleum	Pre-Combustion	35.94	0.5573	0.0006	202				
1 MWh = 25 gal	Combustion	261.44	0.0109	0.0022	290				
Natural Gas	Pre-Combustion	16.48	0.7350	0.0001	004				
1 MWh = 35 therms	Combustion	183.64	0.0035	0.0003	201				
Carbon Dioxide Equivalent (CO₂e) Emissions (kg/MWh) – 20-year / 100-year GWP									
Coal 1 MWh = 354 lb	Pre-Combustion	7	43/16	0.03	382/253				
	Combustion	327	3.18/1.15	2	302/303				
Petroleum 1 MWh = 25 gal	Pre-Combustion	36	46/17	0.17	245/245				
	Combustion	261	0.90/0.32	0.59	343/313				
Natural Gas	Pre-Combustion	16	61/22	0.02	064/000				
1 MWh = 35 therms	Combustion	184	0.29/0.10	0.09	201/222				
Global Warming Potential									
GWP	100-year	1	29.8	273					
	20-year	1	82.5	273					

Fossil Fuel Power Plant Emissions

Emissions per unit of		Pre-combustion emissions per unit	-	Combustion emissions per
electricity delivered to	=	of fuel burned (kg/MWh)	т	unit of fuel burned (kg/MWh)
customers (kg/MWh)		Power plant efficiency	×	Grid delivery efficiency

Table 2 – GHG Emissions from Coal, Oil and Natural Gas Power Plants (kg/MWh)

Source: Calculated using the procedures in this blog. Based on 20-year GWP.

Power Plant Type	Heat Rate (Btu/kWh)	Power Plant Efficiency	Delivery Efficiency	Combustion Emissions	Pre-Combustion Emissions	Total Emissions
Coal	10,551	32%	94.9%	1,083	165	1,248
Petroleum	11,135	31%	94.9%	906	283	1,189
Natural Gas	7,732	44%	94.9%	440	185	625

ASHRAE Puget Sound, September 18, 2024

Source: https://eley.com/node/47

Retrospective and Average GHG Emissions (20-y GWP)

Table 3 – GHG Emissions from Coal, Oil and Natural Gas Power Plants (Ib/MWh)

These data are calculated based on a 20-year time horizon and 1.08% methane leaks to power plants.

ASHRAE Puget Sound, September 18, 2024

Informative Appendix I, Standard 189.1-2023

- Documents the assumptions and methodology used to develop the GHG emission rates discussed here
- Provides guidance on how to adapt the results for special cases
 - Different mix of electric generators
 - Liquified natural gas
 - Imported Coal

Building	g Codes	113	83	80	84	144	229	210	193	278	270
297	223	120	91	80	94	147	239	233	201	283	287
301	226	124	89	88	98	158	242	243	209	293	287
293	219	123	89	85	93	159	249	245	209	284	285
280	209	114	88	86	100	156	250	242	205	270	289
264	196	108	81	64	61	95	175	217	194	263	273
247	185	89	63	56	52	83	104	126	93	218	252
184	109	60	57	53	52	75	107	124	87	140	159
112	103	57	54	53	54	74	102	119	93	125	126
110	99	55	54	54	53	73	106	114	95	129	124
111	99	55	53	53	52	70	109	120	83	128	126
109	100	53	53	54	52	68	114	123	80	134	128
111	99	53	55	52	54	72	116	118	79	135	133
107	102	54	56	51	53	71	114	107	79	138	138
115	107	56	56	51	54	72	108	105	79	138	155
150	105	58	56	53	53	76	106	102	95	183	201
245	167	79	67	63	55	83	110	132	140	246	257
236	188	82	71	68	55	87	130	167	150	241	248
233	185	77	72	75	77	102	141	158	142	239	241
234	181	78	71	73	70	93	126	156	138	237	243
237	184	77	73	73	65	94	125	155	135	240	243
242	186	87	79	85	66	120	156	173	150	246	246
253	185	99	84	73	63	130	184	176	159	247	248
269	198	107	83	82	73	155	218	190	184	262	259

Retrospective vs. Forward-Looking

- Buildings addressed by building codes will not be constructed until several years from now.
- Once constructed they will use energy for decades beyond the date of the certificate-ofoccupancy.

Projections are <u>annual average</u> emission rates based on the reference case and projected generation mix from from EIA's Annual Energy Outlook (similar data not available by eGRID subregion)

Average vs. Marginal Carbon Emissions

- New buildings new add load to the electric grid that will be supplied by the "marginal generator".
- The "marginal generator" is the generator that would increase or reduce its supply in response to an incremental increase or reduction in load.
- Design decisions for new buildings should be based on marginal emissions.
- Carbon accounting for benchmarking programs is typically based on retrospective average emissions.

Supply Stack

<u>Average</u> emissions are the weighted average of the emissions from generators A, B, C and part of D.

<u>Marginal</u> emissions are the emissions of generator D, the marginal generator.

Space Granularity

 2021 map is similar (but not identical) to eGRID subregions

Revised Cambium GEA Regions – 2023

ASHRAE Puget Sound, September 18, 2024

Time Granularity (two choices)

- Month-hour data (288 bins)
- Year-hour data (24 bins)

NWPPc	7	Hoffse	t										
Emissions Signate	ure (kg/MWh)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
0	230	208	179	128	137	173	187	198	236	207	248	229	197
1	231	213	175	126	140	173	191	203	245	208	250	226	199
2	236	215	172	123	133	180	188	209	251	206	251	222	199
3	233	215	174	127	135	171	188	206	250	209	244	220	198
4	228	209	168	122	130	156	176	204	239	206	240	224	192
5	229	201	154	111	105	123	148	174	233	199	231	221	178
6	227	190	146	100	96	119	141	145	193	169	225	216	165
7	203	150	110	91	96	115	133	139	187	150	196	194	148
8	170	144	105	93	92	114	123	133	180	153	195	175	140
9	171	141	100	90	93	111	121	128	170	153	198	177	138
10	174	143	103	89	90	107	113	128	158	145	198	176	136
11	177	143	99	90	91	103	113	122	155	149	197	179	135
12	175	141	100	91	87	100	107	126	148	149	201	190	135
13	167	142	103	89	87	96	108	120	142	141	197	183	131
14	173	143	102	92	87	101	104	117	143	143	205	192	134
15	201	150	114	92	89	104	113	128	149	167	231	217	147
16	235	189	150	109	102	113	124	142	190	193	235	224	168
17	231	196	153	120	120	140	144	163	218	192	239	223	180
18	235	193	146	121	128	155	162	174	208	193	240	225	183
19	232	194	147	121	130	157	162	169	209	193	234	222	182
20	231	195	151	120	131	159	164	170	214	196	237	226	184
21	231	193	154	117	138	166	168	179	222	197	240	225	187
22	225	198	166	117	131	166	169	177	227	202	243	224	188
23	227	203	172	123	138	166	176	187	233	207	245	226	193

Example Calculation (SRSO, Medium Office)

Consumption Signature

0.0005

LRMER Emissions Signature

455

506

436

483

445

373

341

394

ASHRAE Puget Sound, September 18, 2024

ASHRAE Puget Sound, September 18, 2024

Cambium Database

ASHRAE Standard 189.1

History

- In 2010 standard was first published. The energy performance approach requires that buildings have lower carbon emissions based on a baseline building defined in Standard 90.1. The in 2010 version, a single emissions rate was published for electricity that applied to the whole country.
- In 2017, separate emission rates for electricity were published for each of the eGRID subregions.
 Emission were updated to be consistent with the latest EIA and EPA data.
- In 2020, Emission rates were updated to be consistent with the latest EIA and EPA data.
- In 2023, Emission rates were updated to be consistent with the latest EIA and EPA data. AND, a
 jurisdictional option was added to include hourly long-run marginal emission rates (LRMER).

Possible Future

• For 2026, the committee is considering deleteing the performance metrics for cost and source energy, leaving carbon emissions as the sole performance metric.

ASHRAE Standard 90.1

History

- Prior to 2022, the standard did not directly address carbon emissions or climate change. Energy cost
 was the sole performance metric.
- In 2022,
 - Informative Appendix I was added that provides a optional procedure for local governments to adopt other metrics such as site energy, source energy and GHG emissions. Uses 189.1 emission rates.
 - Appendix L added a Total Systems Performance Ratio (TSPR) which includes an informative note that GHG emissions can be substituted for cost.

Possible Future

- Informative Appendix N to 90.1-2022. Net Zero Operational Energy Emissions (NZOEE). Contains table that show how much renewable energy must be either installed or purchased to achieve NZOEE. The procedure includes credits for more efficient equipment, etc.
- A prescriptive pathway to NZOEE is being considered in another proposal.

California Building Energy Efficiency Standards

- Legal counsel advised the California Energy Commission that to comply with federal law, stateadopted energy standards must be based on either cost or energy.
- Their opinion is that to base an energy standard on GHG emissions could be a violation of the preemption clauses in federal law.
- To address this issue, the California standards use hourly source energy as the metric for evaluating energy performance, but they define hourly source energy in such a way that it tracks GHG emissions very closely; the source energy from both nuclear and renewable energy generators are assumed to be zero.
- The graph at the right is from a blog I wrote that compares various metrics for each of the eGRID subregions.

ICC and the IECC

- The ICC Board of Directors are recommending a revised scope and intent that explicitly prohibits ICC energy standards from directly addressing climate change measures such as EV charging, solar, batteries and probably demand-response.
- The revised scope and intent has a shady history:
 - The consensus committees for both the residential and commercial updates to the IECC for 2024 voted for and approved a number of requirements to address climate change, including on-site solar, batteries, and EV chargers.
 - Appeals were filed by power players in the building industry.
 - The ICC Board agreed with appellants and made all requirements related to EV charging, batteries, solar, etc. optional (move to appendices).
 - In doing so, the ICC Board violated its own rules to only consider appeals that address process or procedure issues.
- However, an optional Appendix CC requires that renewable energy be installed or purchased in quantities sufficient to achieve zero. First adopted for 2020 and updated for 2023. Not mandatory.

Washington State and Seattle

- No direct requirements on GHG emissions (that I know of)
- For new construction and electrification, WA and Seattle energy codes now have the "fossil fuel compliance path" to work around the Berkeley court decision. Fossil fuel space heating and water heating is allowed only if applicants qualify for "additional efficiency credits".
- The Seattle Energy Code requires that fossil fuel heating and water heating equipment in existing buildings be replaced with heat pumps, but includes some broad exceptions permitting partial or delayed compliance. Any project not doing full electrification must provide a "future decarbonization plan."

ASHRAE Standard 242P

Future

 This standard is under development and aims to establish one set of GHG emission factors that would be used in all ASHRAE standards.

Washington State – Clean Buildings Performance Standard

- First enacted in 2019
- Sets EUI targets aimed at reducing the energy use of the worst-performing half of the building stock to the average
- Applies to commercial buildings with staggered implementation based on floor area
 - Over 220,000 square feet by June 2026
 - Over 90,000 square feet by June 2027
 - Over 50,000 square feet by June 2028.
- Compliance options
 - Direct compliance show you meet the targets
 - Investment criteria path do an ASHRAE Level 2 audit and implementation what's cost-effective
- Financial incentives offered for early adopters
 - \$0.85 per square foot for buildings that are 15 EUI points above the target and achieve compliance before the deadlines

Seattle Building Emissions Performance Standards

- Adds GHG emission targets as a layer on top of the Washington State Clean BPS
- Sets targets requiring all covered buildings to achieve to zero GHG emissions over the next couple of decades (see table to the right)
- Includes emission factors (see table below)

Table B for 22.925.070: Greenhouse gas emissions factors					
	Emissions factors (kgCO2e/kBtu)				
Energy source	For baseline GHGI (2019-2028)	For compliance GHGI (2031 – 2035) (Provisional)			
Seattle City Light electricity	.0058	.0029			
Puget Sound Energy natural gas	.053	.053			
CenTrio district thermal energy	.081	.081			

Other fossil fuels: Emission factors for fuels such as heating oil, propane, etc. will reference the US EPA.⁴

BEPS Greenhouse Gas Intensity Targets (GHGITs)

	GHGITs (KGCO2e/SE/YR) by compliance interval						
Building Activity Type	2031-2035	2036-20401	2041-2045 ^{1, 2}	2046-2050 ^{1,3}			
	2031-2033	2030-2040	2041-2045	2040-2030			
College/University	2.69	1.57	0.00	0.00			
Entertainment/Public Assembly	1.18	0.69	0.00	0.00			
Fire/Police Station	2.23	1.30	0.00	0.00			
Hospital	4.68	2.73	0.00	0.00			
Hotel	2.06	1.20	0.00	0.00			
K-12 School	0.95	0.56	0.00	0.00			
Laboratory	6.30	3.68	0.00	0.00			
Multifamily Housing ^{3,4}	0.89	0.63	0.37	0.00			
Non-Refrigerated Warehouse	0.77	0.45	0.00	0.00			
Office	0.81	0.47	0.00	0.00			
Other	2.48	1.45	0.00	0.00			
Recreation	3.22	1.88	0.00	0.00			
Refrigerated Warehouse	0.98	0.57	0.00	0.00			
Residence Hall/Dormitory	1.16	0.68	0.00	0.00			
Restaurant	5.73	3.34	0.00	0.00			
Retail Store	1.03	0.60	0.00	0.00			
Self-Storage Facility	0.31	0.18	0.00	0.00			
Senior Living Community	2.11	1.23	0.00	0.00			
Services	1.36	0.79	0.00	0.00			
Supermarket/Grocery Store	3.42	2.00	0.00	0.00			
Worship Facility	1.20	0.70	0.00	0.00			
1 – Targets may be revised by futur 2 – Net-zero emissions by 2041-204 3 – Net-zero emissions by 2046-205	re rule, per subsec 15 for nonresident 50 for multifamily	tion 925.070.A. ial. housing.					

housing may receive an extension from meeting the GHGITs in 2031-2035 but still must meet benchmarking verification and all other reporting obligations for 2031-2035.

Other Cities

- New York City: Local Law 97 sets carbon emission limits for buildings over 25,000 square feet.
- Boston: Has a BPS that targets energy use reductions in large buildings.
- St. Louis: Enacted a BPS focusing on energy performance in buildings over 50,000 square feet.
- Washington, D.C.: Implemented a BPS that requires buildings to meet specific energy performance targets.
- Reno, Nevada: Adopted BPS to enhance building energy efficiency.
- Chula Vista, California: Has also enacted BPS to address building energy performance.

Base Diagram

- Primary energy is originates from the sun
- Secondary energy is created from primary energy
- Virtually all GHG emissions originate from fossil fuels or biomass
- This diagram will be used to illustrate GHG for various forms of energy

ASHRAE Puget Sound, September 18, 2024

Fossil Fuel Use

- Fossil fuel is extracted from the earth and delivered to buildings or industry where it is burned
- It is used to power buildings, industry and transportation
- Emissions include both precombustion and combustion

ASHRAE Puget Sound, September 18, 2024

Conventional Electricity

- Conventional electricity is generated from a variety of generators
- The mix is very different by state or country and changes hourly depending on load

Clean Electricity

- Clean electricity is generated solely from renewable energy or nuclear
- This is our goal
- Solar and wind are variable so clean energy requires some means of electricity storage

ASHRAE Puget Sound, September 18, 2024

District Heat

- ASHRAE
- Typical of most district heating systems
- Boilers are often inefficient and pipe losses are significant

Zero-GHG District Heating and Cooling

Stanford University and the Google Bay View campuses use systems like this

ASHRAE Puget Sound, September 18, 2024

Gray Hydrogen

 About 95% of hydrogen is produced this way

Green Hydrogen

- Less than 1% of hydrogen production
- Is really a form of electricity storage

ASHRAE Puget Sound, September 18, 2024

Biomass – It's Complicated

Possible Biomass Actions	Counterfactual	Impact
Methane is captured from feed lots or landfills and mixed with natural gas supplies or used to generate	Methane would be released to the atmosphere but at a slower rate. Methane has a global warming potential	Somewhat beneficial. The global warming from the
electricity. CO_2 is released to the atmosphere as the methane is burned.	much greater than CO_2 .so the climate damage could be greater	release of methane.
Switchgrass, corn or sugar is grown and processed	The land would be used (or continue to be used) to	Depends. The main difference between the action and
into ethanol. GHG would be released through farming, processing, delivery and finally from combustion of the ethanol.	grow, process and deliver food to consumers, a process which would also generate GHG.	the counterfactual is the combustion of the ethanol. This represents a burst of GHG as opposed to a slow release from digestion and food waste in landfills. Also, land that would otherwise be used to grow food would be repurposed to generate a biofuel.
Wood or waste is burned to make electricity. CO_2 and other pollutants are released to the atmosphere. This release would be near instantaneous in geologic time.	The wood or waste would release CO_2 and other GHG if it is left in the forest or land fill to decay. This process would be slow and last for decades	<i>Bad.</i> Wood/waste power plants are extremely dirty, producing more pollutants per MWh than even coal plants. While similar amounts of GHG would result from the counterfactual, the release would be spread over decades.
Timber is harvested to produce pellets that are	The unharvested forest would continue absorb GHG	Really Bad. Significant GHG emissions would be
processed and shipped overseas to make electricity.	from the atmosphere.	released from the activities of making pellets, shipping
GHG is released from harvesting, transportation,		them to a remote location, and burning them. The
processing the pellets, shipping them to the power		impact would be amplified as a carbon sink is
plant and from combustion at the power plant.		eliminated.
Rain forests are burned to clear land for agriculture or grazing.	The rain forest would be maintained and nurtured as a major carbon sink.	<i>Worst</i> . A significant carbon sink is destroyed and massive carbon emissions result from the fire.