price

Acoustical Considerations for Building Design

COPYRIGHT MATERIALS

This presentation is protected by U.S. and international copyright laws. Reproduction, distribution, display and use of this presentation without written permission of the speaker is prohibited.

® Price Industries, Incorporated 2022

Acoustical Considerations for Building Design Presenter

Chris Dziedzic, B.Sc ME, P.Eng

Price Industries General Manager,

Noise Control

- Oversees the Noise Control Design and Application Engineering teams as well as Noise Control product research and development
- 15+ Years of Experience in HVAC Industry
- Primarily focused on commercial building HVAC acoustics and noise mitigation solutions

AGENDA

- Importance
- Relevant Terminology
- 3 Main Aspects
 - Source
 - Path
 - Receiver
- Quiet HVAC Systems

Acoustical Considerations for Building Design

"...patients complain about noise two times more often than anything else in a hospital, including the food." – Fick and Vance

"...guest reviews for 5,683 hotels found that **noise gained more negative mentions than any other complaints**."

-ReviewPro

Acoustical Considerations for Building Design

Acoustical Considerations for Building Design

The Acoustical Environment: "Dead" \rightarrow "Live"

Use of the room dictates the acoustical goals Highly reflective = "live" Very absorptive = "dead"

Requirements of most rooms will fall somewhere between these two extremes

Relevant Terminology

• Noise ?

Any unwanted sound

Describing Sound

- Sound Power (Lw)
 - The amount of acoustical power a source radiates
 independent of the environment, measured in Watts (W)
 - Equipment \rightarrow Source
- Sound Pressure (Lp)
 - The pressure fluctuation of a sound source that is dependent on source distance and the acoustical environment, measured in **Pascals** (Pa)
 - Design Criteria \rightarrow NC / dBA = Receiver

Inverse-square law (for sound)

Free Field Example #1

Free Field Example #2

Line Source

Sound energy decreases by 3dB for each doubling of distance from source.

Point sources reinforce each other!

Distance (Easy)

Hearing Range

Animal	Range, Hz
Elephant	5 – 12,000
Fish	20-4,000
Human	20 – 20,000
Cat	45 - 65,000
Dog	50 - 45,000
Dolphin	75 – 150,000
Human Speech	125 – 8,000
Mouse	1,000 - 100,000
Bat	2,000 - 120,000
Politicians	N/A

• Wavelength, $\lambda = 1130 / f$

Band	0	1	2	3	4	5	6	7	8
Hz	31.5	63	125	250	500	1k	2k	4k	8k
λ	36'	18'	9'	4.5'	2.25'	1.1'	6.8"	3.4"	1.7"

Low Frequency (Rumble) 31 to 63 Hz

Mid Frequency (Neutral) 125 to 500 Hz

High Frequency (Hiss) 1000 to 8000Hz

Typical Background Noise*

Type of Space	NC / RC(N)	dBA
Recording Studio, Concert Hall	15-25	20-30
Teleconference Rooms	25 (max)	30
Boardroom, Conference Rooms, Courtroom	25-35	30-40
Doctor's offices, exam & patient rooms	30-40	35-45
Private Office, Group teaching lab	35-45	40-50
Operating rooms, Patient Care areas	35-45	40-50
Open Plan Office, Corridor	40	45
Restaurants, Retail, Gymnasium	40-45	45-50
Corridors, Lobbies & Public Spaces	40-45	45-50
Testing/research Laboratory	45-55	50-60

*ASHRAE Applications 48.3, Table 1

Frequency	63	125	250	500	1000	2000	4000	8000
Lp	49	42	40	37	36	38	30	25

Noise Criteria (NC)

- Developed in 1957
- Single number rating comparing background sound levels to set of defined NC curves
- 63Hz to 8000 Hz octave bands
- Often used for rating Terminals & Diffusers
- Does not provide a sound characteristic

Room Criteria (RC)

- Developed in 1981
- Intended to establish design goals or as diagnostic tool
- RC curves follow constant slope of negative 5dB per octave band
- Average of 500, 1000 & 2000 Hz octave bands
- Indication of sound level and sound characteristics (Rumble(R), Neutral(N) or Hiss(H))

Decibel Comparison:

Source: AWEA

dB addition

Source #1 **80 dB**

Source #2 **80 dB**

$80 \text{ dB} + 80 \text{ dB} = 1 \times 0 \text{ dB}$ $10 \log (180 \text{ dB}^{+10} + 80 \text{ dB}^{+10} + 80 \text{ dB}^{+10}) = 83 \text{ dB}$

3 Main Aspects

Source (red) Path (blue) Receiver (green)

Multiple Sources and Paths may need to be considered

Source

Prominent Frequency Signature Range of Typical HVAC System Components

Ductwork vs. Silencers

24" x 24" ductwork comparison...

Path	125	250	500	1000	2000	4000
10ft duct w/o lining	2	1	0.3	0.3	0.3	0.3
10ft duct w/ 1" lining	2	5	14	28	22	18
10ft duct w/ 2" lining	3	9	25	35	22	18
3ft rectangular silencer	5	9	20	28	24	18
5ft rectangular silencer	8	16	29	41	30	23
Duct Silencers

Rectangular

Elbow

Circular

Polymer Lined

Packless

Rectangular Silencers

- Most common type of silencer
- Lowest cost
- Breakout noise reduced using HTL casing

Elbow Silencers

- Where standard rectangular silencers will not fit
- Generated noise should be considered
- Recommended velocity below 1500 fpm

Circular Silencers

- Round duct applications
- Higher velocity up to 8000 fpm
- HTL casing at low frequencies

Film Lined Silencers

- Polymer liner + acoustic standoff
- Applications requiring contaminant free environment
- Hospital grade

Packless

- No acoustic media
- Applications requiring contaminant free environment
- Cleanable / Hospital grade
- For applications with extremely high air quality standards

Silencer Location
 Locate as close to the source as possible or within Mechanical Spaces

Place on the rooftop for rooftop units...

...or in vertical shafts

 $\mathbb{N}^{\mathcal{I}}$

Testing:

- Ensure data derived from ASTM E477-13
- Dynamic Insertion Loss (dB)
- Pressure drops (in.w.g.)
- Air flow directions (+ & -)
- Generated noise (dB)

Radiated sound is most often associated with sound energy traveling through **air** to a **receiver**

Mechanical equipment's casing radiated sound or ductwork and flex connection break-out noise

Noise Control products can be utilized to address Radiated Sound Energy by adding sound blocking (**STC**) and sound absorption (**NRC**) to a mechanical space

Acoustic Panels

- Lab rated STC & NRC
- Galvanized, Aluminum, SS
- Painted finishes
- Insulated Tongue & Groove
- H-Channel

Air Transfer Noise

Reduce Noise Flanking

- Common return air plenum
- Often between private & open plan spaces

Return Air Noise

Acoustic Louvers

• Control Noise at the façade of building

Quiet HVAC Systems

Quiet Terminals/VAV Underfloor Air Distribution Displacement Ventilation Hydronic Systems

Quiet Terminal Units

Fully certified terminal / silencer assembly Great for sound sensitive spaces (NC40 and below)

Silencers vs. Attenuators

Silencer

Attenuator

- Attenuator
 - Lined Duct Section
 - Duct Liner Matches
 Terminal Unit Liner
 - 3 or 5 ft. Long

- Silencer
 - 3 to 5 ft. Long
 - Acoustic Baffles
 - Fiberglass Acoustic Media
 - Optional Polymer or Fiberglass Cloth Liners

+

Terminal (ASHRAE 130)

Silencer (ASTM E477)

Can be unpredictable...

	Discharge Sound Power Octave Bands Mid Frequency						
Octave Band	125	250	500	1000	2000	4000	NC
Size 10 Terminal	73	74	71	66	64	63	38
Silencer IL	5	11	22	29	25	18	
Predicted Values	68	63	49	39	41	45	24
Standard Terminal & Silencer Test Results	72	61	51	43	49	51	35

Acoustical Considerations for Building Design

Terminal Unit Silencer – Silencer Test Standard

Acoustical Considerations for Building Design Terminal Unit Silencers - Terminal Units Test Standard

ASHRAE 130

Displacement Ventilation

- **Temperature Stratification**
- Carry contaminants from breathing zone
- Improve Air Quality

Mixing Ventilation

Displacement Ventilation

Hydronic Systems

Panels fit in standard ceiling grid Sails = higher capacity panel

Summary

Acoustical Considerations for Building Design Summary

- Importance?
- Relevant Terminology
- 3 Main Aspects
 - Source
 - Path
 - Receiver
- Quiet HVAC Systems

Acoustical Considerations for Building Design Summary

QUESTIONS?

noisecontrol@priceindustries.com