

Understanding HVAC & Plant Dynamics in Grow Rooms

Optimizing Solutions through Superior Dehumidification Technology SM

Indoor Grow Rooms

Three species but many strains and varieties

Sativa

Ruderalis

Indica

Male vs Female

• Male

• Female

Active Compounds

Known as Cannabinoids

- Primary psychoactive compound:
 THC
- Primary compounds for medical marijuana:
 - CBD
 - CBG

- Organic hydrocarbon compounds that give cannabis its fragrance and flavor
- Psychoactive effects interacts with THC and CBD

Grow Facility Process Rooms

- Mother Room
- Cloning Room
- Vegetative Room
- Flower Room
- Drying Room and Curing Room

What does cannabis need to maximize yield?This is a business!

- Lighting
- Tight environmental control
- Water
- Nutrients
- CO₂

Key Concepts for Grow Room Climate Control

- Temperature and Relative Humidity
- Dew Point
- Vapor Pressure Deficit
- Sensible Load
- Latent Load
- Sensible Heat Ratio

Importance of Temperature and Humidity Control

- Plants
 - Creates the condition for optimal plant growth
 - Avoids conditions for bacteria, fungus, mold, and pest growth
- Building
 - Condensation on surfaces in structure can cause major damage
- Occupants
 - Comfortable working environment and high productivity

Loads for Growing Facilities

- Major loads
 - Lighting (sensible)
 - Evapotranspiration (latent)
- Minor Loads
 - Building Skin Loss/Gain
 - Solar
 - Infiltration
 - Ventilation

Load Details – Lighting

- Lighting is largest part of sensible load
 - Exercise care with "equivalent watts" marketing literature
 - Use power input data for fixture if available
 - Energy in equals energy out
 - LED lights add new variables
- Lighting hours change from vegetative to flowering stages

Evapotranspiration

- This is strictly a latent load
- Evaporation highly dependent on irrigation method
 - Drip Irrigation Low evaporation
 - Flood or Trough Irrigation Higher rate
 - Spray Irrigation Extremely high evaporation
- Best estimated by water in = water out

Transpiration

- Leaf temperature determines the vapor pressure in the leaf
- Air temperature and humidity determines the vapor pressure in the air
- Differential pressure drives transpiration force for nutrients to be brought to upper areas of plant

Transpiration – Lights Out

- Transpiration continues at a lower rate during lights out
- Slowly decreases over 60-120 minutes. Roughly 30% of full light moisture rate when full dark.
- This latent load can still be high while the sensible load is close to zero.

Transpiration

Importance of Air Movement Plant Leaf Boundary Layer

- Water vapor builds at leaf boundary layer
- Creates higher relative humidity and vapor pressure at leaf surface
- Buildup can happen under canopy
 - Dicots have most stomata on underside of leaf
 - 20-30% higher relative humidity under canopy if airflow is too low

Total Loads and Control

2,600 ft² 2,000 plants 50 watts/sq ft. 500 gal/day net water 0 CFM Ventilation - Lights On

Description	Sensible (btu/hr)	Latent (btu/hr)	
Lighting and Appliance	443,690	0	
Doors	0	0	
Ceiling	0	0	
Walls	0	0	
Infiltration	0	0	
Ventilation	0	0	
Evapotranspiration	0	256,608	
Total	443,690	256,608	

443,690/(443,690 + 256,608) = 0.63 SHR

Total Loads and Control

2,600 ft² 2,000 plants 50 watts/sq ft. 500 gal/day net water 0 CFM Ventilation - Lights Off

Description	Sensible (btu/hr)	Latent (btu/hr)	
Lighting and Appliance	1,203	0	
Doors	0	0	
Ceiling	0	0	
Walls	0	0	
Infiltration	0	0	
Ventilation	0	0	
Evapotranspiration	0	109,975	
		-	
Total	1,203	109,975	

No cooling required. Dehumidification Only Load.

Transpiration

Evaporative Cooling Effect

The Penman-Monteith Equation is given by the following equation (E4O, 1998a):

Equation 3

$$ET_{o} = \frac{0.408 \Delta (R_{n} - G) + \gamma \frac{900}{T + 273} u_{2} (e_{a} - e_{a})}{\Delta + \gamma (1 + 0.34 u_{2})}$$

Where:

ETo	-	Reference evapotranspiration (mm/day)
Ra		Net radiation at the crop surface (MJ/m ² per day)
G	-	Soil heat flux density (MJ/m ² per day)
т	-	Mean daily air temperature at 2 m height ("C)
u2		Wind speed at 2 m height (m/sec)
es	-	Saturation vapour pressure (kPa)
ea		Actual vapour pressure (kPa)
es - ea		Saturation vapour pressure deficit (kPa)

absorbed. 's (swamp

Э

emselves. ction this in

c Pla trar Thr turr

As

— E

Total Loads and Control

2600 ft², 2,000 plants, Lights On 50 watts/sq ft. 500 gal/day net water

Light Vegetation

Description	Sensible (btu/hr)	Latent (btu/hr)	
Lighting and Appliance	443,690	0	
Doors	0	0	
Ceiling	0	0	
Walls	0	0	
Infiltration	0	0	
Ventilation	0	0	
Evapotranspiration	0	50,434	
Evaporative Cooling Effect	-50,434	-	
Total	393,256	50,434	

393,256/(393,256 + 50,434) = 0.89 SHR

Total Loads and Control

2,600 ft², 2,000 plants, Lights On 50 watts/sq ft. 500 gal/day net water

Full vegetation

Description	Sensible (btu/hr)	Latent (btu/hr)
Lighting and Appliance	443,690	0
Doors	0	0
Ceiling	0	0
Walls	0	0
Infiltration	0	0
Ventilation	-0	0
Evapotranspiration	0	256,608
Evaporative Cooling Effect	-256,608	-
Total	187,082	256,608

187,082/(187,082+ 256,608) = 0.42 SHR

Key HVAC Design Elements

- Maintain temperature
- Maintain humidity
- Control Vapor Pressure Deficit

- Maintain air movement through canopy
 - Homogenous environments
 - Eliminate possibility of mold/mildew

Vapor Pressure Deficit

• VPD

Called Vapor Pressure Difference by HVAC

- Defined by combination of two parameters
 - Temperature
 - Absolute humidity (not relative humidity)
- Deficit or Difference
 - Pressure exerted at room conditions vs. pressure at saturation
 - Indicator of Evapotranspiration potential

Low VPD

- Occurs at higher RH values @ constant temperature
 - Higher dewpoints
- Stomata close because transpiration is impaired
- Results
 - Water droplets/condensation on leaves
 - High probability of mold/mildew formation
 - Yield reduced

High VPD

- Occurs at lower RH values @ constant temperature
 - Lower dewpoints
- Plant wants to transpire at maximum rate
- However, stomata close to avoid dehydration
- Results
 - Yield is reduced
 - Plant health compromised

VPD Impact on HVAC

- Cooling
 - VPD has only small impact on performance of the cooling function
- Dehumidification
 - VPD has large impact
 - Dehumidifiers without cooling can add to load
 - Lower dewpoint air makes it harder to condense moisture
 - Larger equipment is required

Sizing Comparison

Impact on unit size @ various design conditions

	Example #1	Example #2	Example #3	Example #4
Temperature (F db)	82	78	74	70
Relative Humidity	62%	57%	51%	44%
Wet Bulb (F)	71.9	67.0	61.9	56.8
Dewpoint (F)	67.7	61.6	54.7	47.1
VPD (kPa)	1.4	1.4	1.4	1.4
HVAC Size (nominal tons)	34	36	43	53
Increase in size		5%	26%	57%

Impact on Costs

- Larger HVAC equipment
 - Increase in capital costs
 - Increase in monthly energy costs

DOES THE TYPE OF SYSTEM DESIGNED MAKE A DIFFERENCE?

Monitoring of N. California Grow Room AC with Reheat Coil

Temperature

Relative Humidity

Monitoring of Oakland Grow Room Purpose Built Environmental Control Unit Temperature

Dewpoint

Summary

- The grow room climate must be controlled to achieve effective yields
 - Temperature & Humidity (Vapor Pressure Deficit)
 - Lighting can be reduced too far. Complicated balance.
- HVAC energy optimization
 - Careful selection of temperature, RH, and VPD is critical to reduce capital & operating costs
 - Metrics must be scaled to achieve maximum yield
 - System to control both the sensible and latent components will be the most energy efficient
- Grower can achieve maximum product yield and a significant energy reduction with an appropriately designed and balanced system

Contact Information

Jim McKillip

- Western Regional Manager, Desert Aire
- <u>JMcKillip@desert-aire.com</u>
- 503-936-5007

Think About Your Design

